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PLASTIC YIELDING AT CRACK TIPS

S. Burhanettin ALTAN and A. Cemal ERINGEN
Princeton University

Princeton , New Jersey 08544

ABSTRACT

Small scale plastic yielding at crack tips is studied by

means of nonlocal elasticity. Plastic lines along the crack

line of Mode III crack are modelled by an array of disloca-

tions. It is shown that plastic yield begins after a defi-

nite value of load, as a consequence of nonlocality. The

length of plastic zone and the dislocation distrubution are

determined as functions of the applied load. Results are in

good agreement with experimental observations.

1.INTRODUCTION
0

One of the fundamental problems of fracture mechanics is

the determination of elasto-plastic stress field near crack

tips in elastic solids. Importance of this knowledge to

designers needs no comments. Traditionally this problem is

approached by means of classical plasticity theory which
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makes no reference to the internal structure of materials.

However, it is well-known that the ultimate understanding of

the crack initiation , plastic yielding and fracture process

are intimately tied to the size and distibution of defects

(such as impurities, voids, dislocations etc.) which exist

naturally in materials. Consequently, the connection and

interrelation of the crack-dislocation assemblies to the

macroscopic plasticity and yielding are fundamental to the

fracture mechanism. It is well-known that classical elas-

ticty predicts an infinite stress at the tips of a line

crack. This result prohibits the use of the concept of

finite yield stress at which plastic yielding begins. As a

result various ersatz (such as energy, J-integral, stress

intensity factor, fracture toughness etc. [1,2] ) have been

invented to circumvent the difficulty posed by the stress

singularity. Clearly occurence of the singularity is a def-

inite sign of the failure of classical elasticity in the

vicinity of sharp crack tips.

Fracture of a ductile solid with crack is always accompa-

nied by significant plastic deformations in the vicinity of

crack. The plastic yielding near the crack tip, in the con-

text of classical continuum mechanics was studied by many

authors [3-9]. Celebrated among these works is the work of

Bilby, Cottrell and Swinden [5] who modelled the plastic

zone by an array of dislocations coplanar with the crack.
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This model is adopted here with basic departure being the

use of nonlocal continuum mechanics.

In material science, still other models are considered

relying on the atomic and discrete granular nature of

materials. Real materials, as distinguished from perfect

crystals, possess extremely complicated inner structure.

Mathematical analysis of crack tip problem, in the context

of atomic theory, faces extreme difficulities, since the

complicated, often unknown geometry of atomic distributions,

large number of dislocations and impurities cannot be repre-

sented with any acuracy. Even if this were possible the

atomic computations requires tedious, lengthly and high cost

computations.

Recently developed nonlocal elasticity (cf. 10-14) is

equipped with inner characteristic length mechanism which

covers on the one hand the atomic and molecular limits on

the other classical elasticity. Eringen and his co-workers

have shown that Griffith's crack problems [15-18] and point

dislocations [19-21] in elastic solids do not possess singu-

lar stress when they are treated within the frame of nonlo-

cal elasticity. Moreover, fracture criteria based on the

maximum stress hypothesis is valid and it predicts correct

cohesive stress for perfect crystals. Several other solu- 0
0

tions based on the nonlocal elasticity [22-24] have shown

clearly the power and the potential of the nonlocal contin-

uum mechanics.

I ,,,5 ,. Cod"



The present work is concerned with the investigation of

the plastic yield at crack tip by means nonlocal elasticty.

We consider a mode III crack which containes a distributed

dislocations of arbitrary magnitude and lengths along the
7%

crack line. Thus the plastic yielding envisioned is small-

scale. An integral equation is obtained for the stress field

along the crack line through the condition that the maximum

stress reach the cohesive yield stress. Computer solution of

this equation gives the dislocation density and the plastic

E. zone size as a function of applied load.

In section 2 we present a summary of basic equations of

linear, nonlocal elasticity for homogeneous, isotropic elas-

tic solids. Section 3 contains Eringen's result (25] on the

stress field due to interaction of single dislocation with

crack. These results constitute the Green's function in the

formulation of the distributed dislocations. Section 4 is

devoted to the solution of the problem and the results

obtained by computer work. Last section gives a discussion

and physical significance of these calculations.

2.BASIC EQUATIONS

In several previous paper (for example cf. [26]), Eringen

has shown that the field equations of linear, nonlocal elas-

ticity for homogeneous, isotropic solid, with vanishing body

forces, consist of the equations of equilibrium

A,



tijJ( ) = 0 , tij = ji1 ()

and the stress-strain relations

tij S()=BJa( I2-x'I 1,)oi ()dv(x') (2)

where a is the classical Hookean stressi3

aoij(QS)=Xe kk (IS) 6i j+2,ei j(2S) (3)

which is expressed as a linear function of the strain e..
1J

2e ij() = ui j() + u i () (4)

Here ui(S) is the displacement vector, X and v are the Lame

elastic constants and indices following comma denote the

partial differentiation with respect to space variable.

a(IZ-2'I,z) is the "attenuation function" which brings the

effect of strains at distant points A' in body to the stress

field at a reference point x . This function depends on a

characteristic length E . The integral in (2) is over volume

of the body denoted by B. The function a is a decreasing

function of I-Z'I . Since intermolecular forces die out

fast with distance, the effective range of a is of the size

of molecular order. For perfect crystals it is of order of

the lattice parameter while for granular and porous solids



it is of the order of micron. If we denote the external

characteristic length by L and an internal characteristic

length at natural state of the body by I then the ratio

e = eE/L = E/L (5)

where eo is a dimensionless material constant, determines

the range of validity of the continuum theory. For e=0 we

have the classical (local) elasticity and for eAO nonlocal

elasticity capable in dealing with microscopic and atomic

phenomena. In fact it can be shown that for an appropriate

function a the nonlocal elasticity gives exactly the same

stress field at atomic points (cf. Eringen [27]). This func-

tion can be determined in various ways: by experiment, by

statistical averages applied to atomic theories and by com-

paring dispersion relations of elastic waves with the phonon

dispersion curves. For example, Ari and Eringen [18] using a

two dimensional lattice, have obtained an excellent match

in the entire Brillouin zone, with phonon dispersion curves,

for

a( I;S )=( 2 ,rE2 )-Ko0 (V: _Y/'E / (6)

where K is the modified Bessel's function of first kind.

For other kernels in 1, 2 and 3 dimensions see [24].
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It is interesting to note that the expression given by

(6) is the Green's function of the linear operator L=1-E 2V2

i.e.,

(I_ 2V2 )a( (7)

where 6(x) is the Dirac delta measure. This feature of the

function K allows us to invert the constitutive equation

(2) of nonlocal elasticity:

(l-E 2 V2 )t ij=ij (8)

With this apparatus at hand, Eringen [25) gave the solution

of the boundary value problem of nonlocal elasticity on the

interaction of a dislocation with crack, relevant to the

present work. This is summarized in the following section.

3.FORMULATION OF THE PROBLEM

The main purpose of this study is to describe the plastic

zones at the tips of a crack for Mod III problem. The plas-

tic zones will be modelled by an array of dislocations. We

consider a homogeneous, isotropic, elastic medium of infi-

nite extend weakend by a crack located at -c < xI : c

x2 O , -- < x 3 < - and is subject to a constant antiplane

shear load To at x2=;. We assume that there exist a screw

dislocation whose Burger's vector b is parallel to the x3

Oj



axis and intersects the plane x3 =0 at the point S( xl=,

x2=0).,(see Fig.1) The classical solution of this prob-

lem (i.e. interaction of a crack and a dislocation) has been

given by Louat[5] in a general form. The classical solution

of this problem has also been given by Eringen[25] in a more

appropriate form which may be expressed as follows:

a o23(Xlx2)-io13(XlX2)=

0Z+ 2 [~b[ +( -c2  (z- [*] }(9)

where i=V-I , z=xl+ix2 is the complex variable , z=x -ix

being its complex conjugate. The net content of disloca-

tions in the crack is assumed to be zero. This expression

contains four different response of the medium:

* (i) Stress field due to applied load a2 3 = To

a23(xlX 2 )-i0 1 3 (xlx 2 )=To (10)

(ii) Stress field due to the response of the crack to the

applied load:

a 23(Xlx2)-il3(xlx2 )=,EO{((,2-c2 r -l} (11)

9.. (iii) Stress field due to the existence of the disloca-

tion at x 1 = , x2=0:

a2 3 (xI x2 )-i 1 3 (xI x2 )= (21T)'uib(z-t)-I (12).4



[77
(iv) Stress field due to the interaction of the disloca-

tion with the crack:

a 2 3 (XlX 2 )-ia1 3 (xlx 2 )=

(2r)-*pb{ (Z2-c')-O [ J+ (g2-c2) 0 (2_&))-I] _-2_- )- 1) (13)

It is clear that the expression (9) has square root singu-

larities at the crack tips and I/r singularity at the disla-

cation. For the nonlocal solution of this problem Eringen

[251 has argued that the nonlocal stress field does not

possess any singularity. To obtain the nonlocal stress field

it was necessary to find the solutions of the following par-

tial differential equation

(l- 2V2 )t = a (14)

where

t(xlfx 2 )=t2 3 (x,x 2 )-it 1 3 (X 1 x,2 ) (15)

and a is given by (9). It is easy to verify that t=a is a

particular solution of Eq.(14). The general solution of the

homogeneous equation [(14) with a=0] that possesses proper

symmetry regulations and vanishes at infinity can be formed

from the generic solution

t=K(r/E){Ae iv8+B iv8  (16)

t 4vrE



where A , B and v are constants , K (p) is the modified

Bessel's function of first kind and (r,O) are the plane

polar coordinates.Considering the limiting behaviour of mod-

ified Bessel's functions of first kind with integer order,

for small values of argument we have (c.f. (9.6.9) in [28])

-v (17)
K (z) - sr(v)(.5z)(

V

and the special representation of KI/2 (c.f. (10.2.17) in

[28])

K 1/2 (z) = .1/2z' e- z  (18)

The nonlocal stress field is then given by [25]

t 23 (Xlx 2)-t3(x:lX2 ) =  C(n/2rl Toe- rI/E e- i~j/2

+ C2Kl(r3/E)ei(83-01) + (rlr2 .e6(82)/2 {T0 re - i o
213 r1 2r e:

+ (2w)'iUb{l+[&(&+2c)];4 (rie ,_1 )-1 (19)

where

CI1=_ (c/II) { 0+ (21rc)-Zub[I- (I+2c/&) a] ) (20)

and

C2 =- (211E Y'ub (21)



* For the purposes of this study we need to consider an anti-

symmetric dislocation distribution. Consequently we super-

pose the stress field due to the dislocation located at

(X- x2=O) and with -b Burger's vector to (19). With
%"PIN

% this the singularity is removed from the crack tip at x=-c

The stress distribution may be expressed as

t 2 3 -it 1 3 =(r 1 r 2 ;e i (81+82)/
2

r9 { 0i+ (1T) b[&(t+2c) ] a(&+c) (r r4)- e i ( 3 + 8 , ) }

(c/2rl) { - ( o(c)b [ (t+2c) ] (t+c) )e-r/£ ei -
.TA. -tc ) -2i82/2_

.(c/2r 2 )V {t 0 +(1c)-1Ib[ ( +2c) /2A(c+c))e- r 2 /c e -

(2VE)-'ub{e1O8K 1 (r 3 / )+eiKI(r 4 / ) (22)

where e. and r. are the polar coordinates as shown in Fig.2

. Since we are dealing with small scale yielding near crack

tip we need only the t2 3 component of stress on the plane

coplanar with the crack. From (22) we have

t2 3 (x, 0)=t c (x)+tCd (x)

t c ( x ) = -t . { [x(x+2c) ]-Oa(x+c)- (c/2x) e-X / E)

t Cd(x,0 =(TrU)

{ [x(x+2c)] l(+ c ]O x t ' x t+ c -( + )

~(cO[t (t+2c)jl"O(t+c) x-O e - x / E-

(. (2 [ sgn(x-t)KlI(IX-tl/)+KlI((x+&+2c)/) ]}

(23)



-y where x denotes the distance from the crack tip at right

hand side. The stress field, due to an array of disloca-

tions in the interval (a,b) with density b(&) can now be

expressed as:

t(x) = tc(x) +a fb tcd (x,&)b(&)dt (24)'N
4.SOLUTION OF THE PROBLEM

From the point of our intrest we aim to solve the Eq.(24)

for t(x)=ty, d<x<e,where ty is the cohesive stress between

atoms and d,e are the coordinates of the plastic zone. The

equation which we need to solve is a Fredholm integral equa-

tion of first kind with a smooth kernel. The well-known

ill-posed character of such equations increases with the

smoothness of the kernel. In general, all information pro-

vided for these equations, either analytical or numerical

point of view, is crude rule of thumb rather than a precise

guide to the nature of the problem. For analytical and

numerical treatment of Fredholm integral equation of first

kind [29-32] can be referred.

Among the numerical techniques for solving the Fredholm

N integral equation of first kind, the so-called Mtiniaal Least

Square Solution is perhaps the most reliable and handy one.

According to this method, the unknown function is approxi-

mated by a set of basis function

n
b(&) = I b. i(&) (25)

i=I i

I .r

etA



and the unknown coefficients b. are so described that the1

difference between the results obtained from the integral

with (25) and the desired result will be minimum with

respect to a norm

n bcd
I b. I t (x,4)O.(&)d&+t (x)-t yi-min d<x<e

i=1 ay

(26)

In some cases, some restrictions on b. may accompany to this

minimization problem.

As a first approach

Si(4) = 1 4. < &i+l (27)

can be chosen. Here i and i+l denote the coordinates of a

subinterval in (a,b). With this set of basis function it can

be constructed a simple algorithm since t Cd(x,&) can be

integrated with respect to 4 :

T i(x) = &iI i + I t Cd(x,&)d& (28)

Before performing the integration let us normalize the dis-

tances with the half crack length c and the stresses with

the cohesive stress t
y

z = x/c , /c , R T /t (29)

In terms of these new variable we have

0

%*-



t cd(z, T1) (7c )'Ii

*(1/v2Z) [n(i+2 ) 1-(ilZ e-(/ z

A To calculate the integral (28) we consider the following

indefinite integrals:

f[x(x+2) ]0(y-x)1dx=-[x(x+2) ]O+[y(y+2)]IV

{ln( [y(y+2) I'Alx(x+2) ] '-(y+l) (y-x)+y(y+2))-

ln(y-x))+(z+l)ln([x(x+2)]+(y-x)-(y+.)) (31)

It should be noted that the definite value of this integral

exists in the sense of Cauchy Principle Value if z takes

place in the integration interval.

fi x(x+2) 'A(y+x+2)1 Idx±- x(x+2) 'ftjy(Y+2 ) ] '

{ln([y(y+2)]1A [x(x+2)]VO-(y+l)(y+x+2)+y(y+2))-

ln(y+x+2)}+(z+1)ln{jx(x+2) L'(y+x+2)-(y+l)) (32)

SI~x(x+2)1]w2(x+l)dxlix(x+2)1IA (33)

fsgn(y-x)K1 (ly-xi)dx=IO(Iy-xl) (34)



Also the definite value of this integral exists in the sense

of Cauchy Principle Value if z is in the integration inter-

val. With the aid of these results 'f'(z) can be expressed

as follows:

11 L(z)=(lf-'l)(2/A) (R- RI)+lnE 1+lnE 2+

(R 2 -RI) (2 z)112e (c/E)z..

(1/2) [K 0( (c/E )!A 1 )-K0( (c/e)!A

K 0 ((c,/s)(B+B 1 ))+KO((c/)(B+B 2 4) (35)

where

A=[z(z+2)]1A A1 ~-. 1+ =zl

B~z+1 , Bi+jl 1 
, B 2=n. +1

11 ,ni+ 1 (i+ 1+2 '0 2=[l 1 1+2

9E 1 =1A 2 /A1 I (B+B,)f
1 (B+B 2 )

E2=A.Ri-B.A+ 2 )(A.R-B.B1 -1)
1~ LA+

E A.R-B.+ 2 )A.R-B. 1
22 2 A2 + 2 B2 -1

E2 =E2 1 1/E 2 2  (36)

Let us def ine the residuals

n
r. b E b. i'(z. + tc (z. - t y d'~z.<e (37)

Now, we wish to describe the unknown coefficients b.i by min-

imizing the squares of residuals



A m
F I (r.) 2  (38)

j=l

It should be noted that a necessary condition for the exis-

tence of a set of b.'s which minimize the functional F isa

that m > n . The fundamentals of the solution techniques of

these kind of problems Dennis and Schnabel [33] can be con-

sulted. Since the experimental results [34] indicate that

the dislocations near a creack tip have always the same sign

we solve the Eq.(38) with the constrains

b. -> 0 (39)

In the solution of this problem the following points are

important:

( i) The begining and end points of the dislocation zone

(a,b) and of the plastic zone (d,e) are the unknowns of the

problem for a given applied load. There is no appearent

mathematical reason to take a=d , b=e which is the case in

classical approach. Neverthless, good results (in stress

and dislocation distribution) are obtained when they are

chosen very close to each other.

(ii) An important difference between classical and nonlo-

cal approach is the occurence of the plastic yield at crack

tip. As is well known, in classical approach, plastic yield-

ing occures for every value of applied load. But this is not

true in nonlocal approach. Since the response of a crack to



the external load possesses an extremum near the crack tip

in nonlocal approach the plastic yielding will begin after a

definite value of applied load for which the extremum value

of elastic response exceeds a prescribed limit (maximum

stress hypothesis). So, the nonlocal elasticity enables us

to define a critical value of applied load after which the

plastic yielding occures at the crack tips.

(iii) The coordinates of dislocation zone (or plastic

zone, assuming the coordinates of both zones are same) are

unknown. An examination of the behaviour of the nonlocal

elastic stress field near crack tip clearly indicates that

the beginning point of dislocation zone is very close to the

point at which the elastic stress distribution reaches its

extremum value. The end point of dislocation zone is a func-

tion of the applied load. To determine this point for a giv-

en value of applied load it is necessary to solve a diffi-

cult nonlinear problem in which applied load is unknown.

Instead of tedious computations required by this process we

choose the applied load as unknown for a given value of the

end coordinate of plastic zone. This approach provides much

simplicity and economy in the volume of computations.



5.RESULTS AND DISCUSSION

The problem to be solved is to determine the dislocation

densities b and the applied load r1 so that the functional

F given by (38) reaches its minimum value under the con-

strains (39). The main parameters of the problem are the

internal characteristic length (e) and the half crack length

(c). The results obtained for E = .00001(cm.) and c =

.001(cm.) are given in a series of figures (Fig.3-10). In

the figures marked with (a) are shown the stress distribu-

tion. The curves marked as "elastic" and "interaction" show

the contribution of the term tc and tcd which are given by

(30), respectively. The curves marked as "elasto- plastic"

show the totality of these terms. As is seen clearly from

these figures the behaviour of elasto-plastic stress field

is quite reasonable; stress increases to a definite value

(t y), stays unchanged (plastic zone) and decreases to

another value (applied load) asymptotically. The increasing

and decreasing parts of these curves are the elastic

response of the medium. Another important aspect is "dislo-

cation free zone" which is clearly seen in the figures mark-

ed with (b) in which the dislocation distribution are shown.

Dislocation free zone which is observed by in-situ electron

microscope experiments [34] is a natural result of nonlocal

approach i.e. needs no further assumption. In another

series of figures (Fig.ll-13) the results obtained for t =



.O0001(cm.) and c = .l(cm.) are given. The plastic zone is

quite small as compared with the half crack length, in these

figures. For larger plastic zone it is neccesary to take

large number of division of the dislocation zone which makes

computation cost high. If the division number is not suffi-

ciently large then approximation is not good enough as can

be observed from Fig.13 . In the last figure (Fig.14) the

end coordinate of plastic zone obtained by nonlocal and

classical approach are shown. The nonlocal result is remar-

kabely smaller than the classical result. But this is quite

reasonable because there is no plastic yielding for some

values of applied load smaler than a definite limit in non-

local approach while classical approach gives some plastic

zone length.
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